If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+3p-10=0
a = 2; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·2·(-10)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{89}}{2*2}=\frac{-3-\sqrt{89}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{89}}{2*2}=\frac{-3+\sqrt{89}}{4} $
| 32-5x=17-2x | | (48+2x)=2x | | 10(17-p)=60 | | -5-5p=-35 | | 3(x-1)=6x-3(x+6) | | 10.5x+97.38=-9.5x+96.36 | | 2w^2-w-2=0 | | 3x-55x+7=0 | | 7x3.14=x | | 1.7t+8-1.62t=0.4t-0.32 | | -13x+7=3x-17 | | 7+-v3=6+v | | 4/7*(21/8x+1/2)=-2(1/7-5/28x) | | X+2x=366 | | b/13-5b/13=28/13 | | 1/6=-x/15 | | 105-v=188 | | 150-5p=60 | | 8.1x+87.73=-11.9x+86.63 | | 5v-3=7(v+1) | | v+2.39=9.35 | | -14x-12(10x+10)=14 | | A=2,b=-3C=1 | | 6.2x-2.4=3.8 | | 5=-2+y | | -37.9=0.8(0.5x+1.3)+1.06 | | 12y+15=-3y-30 | | 4x^2-9=-34 | | -.75x^2+5x=-12 | | -1(7x+6)-9(-4x-8)-6=29x+60 | | -13-3y=-7 | | 6.2x+2.4=3.8 |